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Abstract
Exposure to artificial light at night (ALAN) is a significant factor in ecological and epidemiological
research. Although levels of exposure are frequently estimated from satellite-basedmeasurements of
upward radiance, and the correlation between upward radiance and zenith sky brightness is
established, the correlation between upward radiance and the biologically relevant exposure to light
experienced from all directions on the ground has not been investigated. Because ground-based
exposure to ALAN can depend on local glare sources and atmospheric scattering, ecological and
epidemiological studies using upward radiance have relied on an untested relationship. To establish
the nature of the relationship between upward radiance and hemispherical scalar illuminance (SI) on
the ground and to calibrate future experimental studies of ALAN,we used hemispheric digital
photography tomeasure SI at 515 locations in coastal southernCalifornia, and compared those values
to co-located satellite-basedmeasures of upward radiance as described by theVisible Infrared Imaging
Radiometer Suite (VIIRS) satellite’s Day-Night Band (DNB) sensor and zenith downwards radiance as
estimated by theWorld Atlas of Artificial Night Sky Brightness (WA).We found significant variations
in SI within the geographic scale defined by the resolutions of both theDNB andWA, aswell as in both
luminance and color correlated temperature (CCT) across individual image hemispheres.We
observed up to two ormore orders ofmagnitude inALANexposure within any given satellite-
measured unit. Notwithstanding this variation, a linearmodel of log(SI) (log(SImodeled)), dependent
only on the percent of the image hemisphere obscured by structures along the horizon (percent
horizon) and log(WA) accounted for 76%of the variation in observed log(SI). DNBdoes not perform
aswell in alternativemodels and consequently future studies seeking to characterize the light
environment should be built onWAdatawhen the high temporal resolution ofDNBmeasurements
are not needed.

Introduction

Ecologists and epidemiologists conducting research on the effects of light pollution have used satellitemeasured
night lights to investigate effects of artificial light at night (ALAN) on the biological world. This line of research
has illustrated the role of ALAN infields as varied as the epidemiology of breast and prostate cancers (Haim and
Portnov 2013, James et al 2017, Rybnikova and Portnov 2017), environmental stressors (Rich and
Longcore 2013,Hölker et al, Gaston et al 2014), the distributions of organisms as varied asmammals (Duffy et al
2015), sea turtles (Mazor et al 2013), and cacti (Correa-Cano et al 2018), as well as the landscape ecology of awide

OPEN ACCESS

RECEIVED

24 September 2019

REVISED

21 January 2020

ACCEPTED FOR PUBLICATION

11 February 2020

PUBLISHED

27 February 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2020TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2515-7620/ab7501
https://orcid.org/0000-0003-0492-5492
https://orcid.org/0000-0003-0492-5492
https://orcid.org/0000-0002-1039-2613
https://orcid.org/0000-0002-1039-2613
mailto:alsimons@usc.edu
https://doi.org/10.1088/2515-7620/ab7501
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ab7501&domain=pdf&date_stamp=2020-02-27
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ab7501&domain=pdf&date_stamp=2020-02-27
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


variety of ecosystems (Witherington et al 2014, Gaston et al 2015, Bennie et al 2015b,Davies et al 2016, de Freitas
et al 2017).

A common element for such studies is the use of satellite-basedmeasurements of upwards radiance as a
proxy for conditions on the ground. Such remotemeasurements are expected to broadly correlate with
conditions on the ground (Kyba et al 2015, Zamorano et al 2015, Bennie et al 2015a, Katz and Levin 2016), either
in terms of the direct radiant glare visible to an organismor the irradiance at a particular location. Given the
ubiquity of lunar cycles in natural ecosystems, and their loss under the influence of ALAN (Davies et al 2013,
Puschnig et al 2014), models incorporating satellite-based datasets have been developed to compare the
magnitude of lunar to artificial lighting (Román et al 2018). If ecological and epidemiological studies are tomove
beyond relativemetrics, the relationship between satellitemeasures and ground conditionsmust be known,
including at finer spatial scales than currently used bymany remotely sensed data products.

Ground-basedmeasurements of nighttime illumination have been developed for astronomical and
ecological research, in particular through the use of hemispherical digital photography for extracting
measurements of illumination, spectrum, and directionality in the light environment (Pendoley et al 2012,
Thums et al 2016). The use of hemispheric digital photography in studyingALANhas expanded from research in
astronomical light pollution (Luginbuhl et al 2009, Pendoley et al 2012,Duriscoe 2016, Jechow et al 2018) to
include ecological light pollution (, Hänel et al 2018, Jechow et al 2018). Digital photography initially quantifies
the lighting environment as an array of pixels, eachwith a set of radiance valueswithin a set of spectral bands.
While it is not straightforward to convert from raw camera data tomeasures such as luminance and illuminance
(Sánchez deMiguel et al 2019), we used commercial image processing software, SkyQuality Camera (SQC;
Euromix Ltd), to approximate such values fromdigital images. Although raw camera data can be used to
estimate theCorrelatedColor Temperature (CCT) per pixel, tools are not currently available to generate a
spectral power distribution.Notwithstanding limitations in extending human-weightedmeasures of the visual
environment to other species,measurements in lux and theCCT are an imperfect but acceptable first order
proxy for brightness and color as it pertains studying subsequent visual and nonvisual responses in a variety of
organisms (Longcore et al 2018).

In this studywe focused on the coastal environment of southernCalifornia, a region both designated as a
biodiversity hotspot (Myers et al 2000, Calsbeek et al 2003, Gillespie et al 2018), and containing the 2nd largest
urban agglomeration in theUnited States. As part of a study on ecological light pollution on the coast of
southernCalifornia, we quantified the relationship betweenmeasures of ALANderived from satellite-based data
and conditions experienced on the ground as assessed fromhemispheric photography. The resulting
measurements provide both a robust quantification of the correlation between satellite-based and ground-based
light pollutionmetrics used in ecological and epidemiological studies, as well as the variations in local
illuminance.

Methods

Site selection
To selectfield sites that are representative of the levels of light pollution experienced along the coast of southern
California (Ventura, Los Angeles, andOrange counties)wemapped upwards nighttime radiance recorded over
the region using the annual composite of data captured by theVIIRSDNB sensor in 2015 (https://ngdc.noaa.
gov/eog/viirs/download_dnb_composites.html).We selectedDNBpixels, usingQGIS 3.4 (QGIS
Development Team2016), with centroids within 250 mof the southernCalifornia coastline. To obtain a set of
sample sites representative of the lighting conditions experiencedwithin the study areawe first log-transformed
our distribution ofDNB values (Note: in thismanuscript we refer to log10 as log). Dividing this distribution into
six quantiles we then used the base R (v3.5.1 Core Team2018) function sample to select 150 sites, 25 per quantile,
representative of the distribution of upwards radiance values recorded along the coast. Given issues of physical
accessibility this set of locationswas further reduced to 103 (figure 1(a)). Using thewilcox.test function in the R
package statswe determined therewas no significant difference in the distribution of upwards radiance values
between the initial set of 150 sites and the remaining 103 accessible ones (p=0.66).

Field data
To quantify the spatial variability of illuminancewithin the average resolution of the pixels acquired from the
2015 annual composite VIIRSDNBdata set, we acquired data atfive locationswithin the 30 arcsecondwide
bounding box centered on each site (Jing et al 2016). Going over the latitudinal range of our study, from
34.355 94 to 33.4051 degrees north, the dimensions of these bounding boxes vary from765m to 774 meast to
west by 927 mnorth to south. This led to 515 images for subsequent analysis. All images were acquired on
moonless nights after astronomical twilight. At each location, positionwas determined towithin 9.0 musing
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mobile phoneGPS (Korpilo et al 2017). All images were taken at each location using aCanonTα camera with a
Sigma 4.5 mm F−2.8 EXDC circularfisheye lens using an ISO setting of 1600 and an aperture of f/2.8.Multiple
exposures were taken at each location, with exposure timesmanually varied in order tomaximize their duration
whileminimizing the level of image saturation according to the on-board camera histogram function. The
camera/lens systemwas calibrated in the field, as well as pairedwith the custom software package SQC v1.9
(SQC), by Euromix Ltd in Ljubljana, Slovenia. To quantify the total exposure to light in the fieldwe used SQC to
calculate scalar illuminance (SI), which integrates night sky luminance across the entire hemisphere of the night
sky using the following equation (Duriscoe 2016, Jechow et al 2018):

ò ò q j q q j
p p

L d d, sin 1
0

2

0

2 ( ) ( ) ( )

Where q represents the zenith angle,j the azimuthal angle, and q jL ,( ) the night sky luminosity function. For
each exposure, the camera was leveledwith a 3-axis bubble level, and orientedwith a compass, to standardize
image orientation for analysis. As an additional assessment of the local lighting environment at each location, we
took an average of 4measurements of the brightness, in the negative logarithmic units ofmagnitude/arcsec2, of
the zenithal 20 degrees of the sky using anUnihedron SkyQualityMeter (SQM) (Falchi 2011).

Data processing
For each locationwe used SQC to select the images which had both the longest exposure, as well as less than 0.1%
saturated pixels, for downstream analysis. Images were then oriented, using SQC,with expected positions of the

Figure 1.Map of sampling sites colored by log(SI) (a) and log(WA) (b). An example of a full hemispheric image divided into 40 sectors
of equal solid angle (red) for analysis of variability in luminance (c), andwith the 30 brightest starsmarked (red) alongwith horizon
boundarymarked (green) for analysis of relative contribution of sky versus structures along the horizon to SI (d).
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30 brightest stars as reference points (figure 1(d)) alongwith the position and time of acquisition for each image.
After reorientationwe then determined the correlated color temperature (CCT) to the nearest Kelvin, SI to the
nearest thousandth of amillilux (mlx) (figure 1(a)), the percent of the image hemisphere of the night sky
obscured by clouds (percent clouds), and the percent of the image hemisphere of the night sky obscured by
structures (including lights) along the horizon (percent horizon) (figure 1(d)).We then used SQC to determine
image statistics, such as a calculated SQM, for images using the full sky hemisphere (zero horizon images) as well
as thosewith structures along the horizonmasked out and their pixel values removed fromdownstream
calculations (horizon edited images).

To estimate values for percent horizon at locationswhere photographswere not taken, we generated amap
of sky view factor (SVF) values, representing the fraction of the sky visible at a given location (Kidd and
Chapman 2012), for our coastal study area using a digital elevationmodel. The digital elevationmodel, which
was sampled at a 5 m resolution, was derived from the 2009–2011NOAA-CACoastal Conservancy Coastal
Lidar Project. Using theUMEPplugin (Lindberg et al ) forQGIS 3.4we calculated the SVF for each 5 mpixel in a
coastal zone 3 kmwide, extending 10 kmnorth and south of our sample site locations.

Given the geographic coordinates of all 515 locations, we usedQGIS 3.4 to extract the expected upwards
radiance from the 2015DNBmap. Values of night sky luminance, as described by theWA (figure 1(b)) (Falchi
et al 2016), were extracted using those same locations from a public site (lightpollutionmap.info). To enable
analysis of the variability of luminancewithin the hemisphere of the skywe divided the hemisphere of the image
into 40 equal area sectors fromwhichwe extracted luminance values (figure 1(c)). The sector boundaries were
defined by 8 equal azimuthal divisions and 5 bands of elevation angles demarcated by the following range of
angles (degrees) above the horizon: 0–11.54, 11.54–23.58, 23.58–36.87, 36.87–53.13, and 53.13–90. From this
schemawe defined our horizon elevation band to be bounded between the angles of 0 and 11.54 degrees above
the horizon, while our zenith elevation bandwas bounded between the angles of 51.13 and 90 degrees above the
horizon.

Statistical analysis
To quantify the degree of spatial variability in log(SI) between locationswithin a site we calculated the coefficient
of variation using the formula for log10 transformed data (Canchola et al 2017):

= -sCV 10 1 2Spatial
ln 10 SIlog

2 ( )( ) ( )

Where s SIlog( ) is the standard deviation on the log(SI)measurementsmeasured at the five locationswithin a site.
To quantify the degree of variation in luminancewithin each image hemisphere we calculated the coefficient

of variation using the formula:

= -sCV 10 1 3Hemispheric
ln 10 Llog

2 ( )( ) ( )

Where s Llog( ) is the standard deviation on the luminance values of all 40 sectors covering an image of the
night sky.

Linearmodels of log(SI)were constructed using the lm function in the R package stats, alongwith various
parameters such as percent horizon, log(DNB) as well as the log(WA) (Falchi et al 2016). The log of all three
measurements of light were used following standard practice in studies of the brightness of skyglow (Kyba et al
2013, Bennie et al 2016). Datawere collected under a variety of weather conditions so that any resultingmodel
could potentially be applicable under conditions beyond cloudless nights. To test this assumption, we compared
bothmeasured values for our SQMreadings and log(SI) extracted fromour photographs against log(WA) using
only our 173 cloudless images, 342 imageswith at least some cloud cover, and all 515 images (figures 2(a)–(d)).
To test for the significance of differences in either theCCTor luminance between the zenith and horizon
elevation bands of the night skywe used the functionwilcox.testwithin the R packages stats.

To determine the contribution of each variable to observed variation in linearmodels of log(SI)we
performed a 1,000 permutation PERMANOVAusing the adonis function in theR package vegan (Oksanen et al
2013). The relative importance of any remaining variables in linearmodels were then assessed using the function
calc.relimpwithin the R package relaimpo (Grömping 2015).We checked the distribution of the residuals for
models of log(SI) (figure S1 is available online at stacks.iop.org/ERC/2/021006/mmedia). Given our large
sample size (515 data points), we could not assume that a violation of the normality assumption for themodel
residuals could be reliably used to assess linearmodels of log(SI) (Ghasemi andZahediasl 2012). Independent of
sample size (Lumley et al 2002), however, the linearmodels of log(SI) satisfied the requirement of constant
variance (figure S1). The validity of ourmodels of log(SI)were then tested using a 10-fold cross-validation, with
100 repeats, using the train functionwithin the R package caret (Kuhn 2019). Further analysis of correlations
between variousmeasures of the lighting environment, alongwith the physical environment, were calculated
and visualized as correlograms using the R package corrplot (Wei et al 2017).
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Results

Modeling of log(SI)
We initially constructed linearmodels of log(SI)which incorporated log(WA), alongwith variables associated
with the time, location, and atmospheric conditionswith the potential to influence the optical properties of the
local air column (tables 1–2).We found log(WA), percent horizon, percent clouds, and air temperature all
contributed significantly to the variation observed in linearmodels of log(SI), althoughmost of the variation in
themodelswas only associatedwith log(WA) and percent horizon (tables 1–2). No significant contributionswere
observed due to the day of sampling, relative humidity, or the angle of the Sunbelow the horizon (tables 1–2).We

Figure 2. Linear regressions with log(WA), for images under all conditions, with a non-zero percentage of cloud cover, and zero cloud
cover for (a) log(SI)with zero horizon and (b) edited horizon images, as well as (c) direct SQMmeasurements with zero horizon and
(d) edited horizon images. Linear regressions with log(SI) for images under all conditions, with a non-zero percentage of cloud cover,
and zero cloud cover for (c) log(SImodeled)with zero horizon and (f) edited horizon images.

Table 1.Relative contributions of variables to the observed variation in
log(SI) on a per location basis (zero horizon images).

Variable F(1,514) r2 p

Log(WA) 1.6×103 0.67 <10–4

Days from the start of

fieldwork

1.2 4.8×10−4 0.28

Angle of solar declination 0.1 3×10−5 0.80

Air temperature (C) 42.2 0.02 <10−4

%Relative humidity 2.9 1.2×10−3 0.10

% clouds 45.0 0.02 <10−4

%horizon 213.5 0.09 <10−4
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observed a shift in the relationships between our twomeasurements of the night sky, SQMand log(SI), and log
(WA), as well as between log(SImodeled) and log(SI), under both cloudless and cloudy conditions (figure 2).
However, themagnitude of the influence of cloud cover isminimal (figure 2)when compared to spatial variation
in thesemeasurements (figure 5). Because both the air temperature andpercent clouds are farmore transient
variables than either log(WA) or percent horizon, and their removal results only in a slight reduction in the
explanatory power of our linearmodels of log(SI) (table 3), we chose a parsimoniousmodel composed only of the
variables log(WA) andpercent horizon.Using either zero or edited horizon images our linearmodel of log(SI),
log(SImodeled) inmlxwas as follows:

= + ´ + ´ ´-SI WA horizonlog 1.4 1.5 log 1.7 10 % 4modeled
2( ) ( ) ( )

This simple linearmodel could account, using either zero or edited horizon images, formost of the observed
variation in log(SI) (r=0.87, p<10–4) (table 3).We found, after using a 10-fold cross-validation using either
zero or horizon edited images, that log(SImodeled) could still account for 76%of the observed variation in
measured values for log(SI).Most of the observed variation in log(SImodeled) could be accounted for by variations
in log(WA) (table 4).

For both zero and edited horizon images, log(SI) had the strongest correlationwithmean SQM
measurements (r=−0.87, p<10−4), our one other directmeasurement of nighttime sky brightness. For our
two independentmeasures of the nighttime sky, log(WA)wasmore strongly correlatedwith log(SI) thanwith
log(DNB) (figure 4).Models that incorporated log(DNB) instead of log(WA) had a reduced explanatory power
for the observed variation in log(SI) (tables S1–2).

Using theGIS-derived SVF values at sample locations in place ofmeasured percent horizon, in addition to
log(WA), we constructed another linearmodel of log(SI) (log(SISVF))with the following formula:

= - + ´ + ´SI WA SVFlog 0.98 1.44 log 2.70 5SVF( ) ( ) ( )

We found thismodel could account for a large portion of the observed variation in log(SI) (r=0.83,
p<10−4). Thismodel could still account for 69%of the observed variance in log(SI) after using a 10-fold

Table 2.Relative contributions of variables to the observed variation in log
(SI) on a per location basis (edited horizon images).

Variable F(1,514) r2 p

Log(WA) 1.6×103 0.67 <10−4

Days from the start of

fieldwork

1.2 5.1×10−4 0.25

Angle of solar declination 0.02 1×10−5 0.87

Air temperature (C) 41.7 0.02 <10−4

%Relative humidity 2.8 1.2×10−3 0.07

% clouds 14.9 6.2×10−3 <10−4

%horizon 229.9 0.10 <10−4

Table 3.Comparison ofmeasured log(SI)with various linearmodels of log(SI) (p<10−4).

Model number zero or edited horizon images Parameters r

1 Zero Log(WA), Air temperature,% clouds,%horizon 0.89

2 Edited Log(WA), Air temperature,% clouds,%horizon 0.88

3 Zero Log(WA), %horizon 0.87

4 Edited Log(WA), %horizon 0.87

Table 4.Relative importance of variables for linear
models of log(SImodeled).

Model Variable Relative importance (%)

3 Log(WA) 63.7

3 %horizon 12.1

4 Log(WA) 63.6

4 %horizon 12.1
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cross-validation using either zero or horizon edited images and provides amechanism to calculate ground-level
light exposure solely from satellite-derived data and readily available topographic data.

Hemispheric variations in the light profile of the night sky
Using zero horizon images we observed significant differences in both the luminance andCCT (p<10−4)
between the zenith and horizon elevation bands of the night sky (figure 3). For zero horizon images the log-ratio
ofmean horizon and zenith luminance values was approximately 0.33, while for the ratio of CCT values between
the horizon and zenithwas 0.83. For edited horizon images these ratios were 0.32 for log(luminance) and 1.45
for CCT (figure 3).Whenwe analyzed edited horizon images, wewere effectively removing relatively dark
structures, such as buildings and hills, as well as sources of direct glare, such as streetlights.With orwithout
editing out structures along the horizonwe found evidence that direct glare is a large, but not sole, contributor to
the difference in log(luminance) andCCTbetween the horizon and zenith elevation bands of the night sky. In
comparing the hemispheric CVon log(luminance)with itsmeanwe foundmore luminous skies tended to be
more anisotropic in the angular distributions of their luminosity, with the strength of this relationship similar
between zero and edited horizon images (figure S2). This again suggests luminous skies tend to be unevenly
luminous, but that their level of luminosity is associatedwith that of the horizonwith orwithout direct glare
sources.

Similar to comparisons between the horizon and zenith elevation bands, the horizon band of the night sky is
farmore luminous than the sky as a whole. For zero horizon images the log-ratio ofmean horizon band
luminance value to that of the entire night sky hemisphere was approximately 0.12, while for edited horizon
images this log-ratio is 0.11. The zenith of the night sky is far dimmer, with the log-ratio ofmean zenith
luminance to that of the entire night sky hemisphere was approximately−0.21 for zero horizon images and
−0.20 for edited horizon ones. Further investigations of the relationship between the luminosity and the angle of
elevation for bands of the sky illustrate a general decline in the luminosity going from the horizon to the zenith
(figure S3). This pattern is also reflected in stronger observed correlations between log(SI) and the luminosity
within the horizon rather than the zenith elevation band of the sky (figure 4). As log(SI) involves a hemispheric
integration of light across the entire night sky, we also found it to bemore strongly correlated to the luminance of
individual elevation bands of the sky as compared to log(DNB) or log(WA) (figure 4).

Figure 3.Violin plots representing, for both the horizon and zenith bands of elevation for zero and edited horizon images: (a)The
distribution of log(luminance) values, and (b) the distribution of CCT values.
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Spatial variability of SIwithin sites
Log(SI)was highly variable within the spatial resolution of the individual VIIRSDNBpixels which defined our
sites (figure S4), with amean spatial coefficient of variation of 0.48 (using either zero or edited horizon images).
This spatial variability was correlated withmeasures of brightness at each location (figure 5), as well as with
percent horizon.Most of this variationwas found to be associatedwith the log of the luminance in the horizon
band of the sky and percent horizon, corresponding with the presence of direct glare sources, with no significant
correlation foundwith the log of the luminance in the zenith of the sky (figure 4). This indicates that within the
urban to suburban environments we sampled, changes in the lighting environment aremostly driven by changes
in sources near the horizon, rather than variations in near-zenith skyglow.

Discussion

Most of the variation in the illumination experienced at our suburban to urban coastal sites could be accounted
for using a simple linearmodel composed of log(WA) and percent horizon. Thismodel appears robust, even
accounting for significant within-site variations in illuminance orwithin-hemisphere variations in luminance
andCCT.

Numerous studies have been published on the effects of ALAN to a variety of species, acquired both through
controlled experimentalmanipulations (Shuboni andYan 2010, Rotics et al 2011,Davies et al 2012, Dominoni

Figure 4.Pearson correlations (p<10−4) betweenmeasures of the lighting environment, the spatial CVof log(SI), and percent
horizon for (a) zero horizon and (b) edited horizon images.
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et al 2013, Le Tallec et al ) andfield data (Witherington andMartin 2000, LeCorre et al 2002, Kempenaers et al
2010). Such studies, in particular those focused on howdistributions of species are shaped by sources of
anthropogenic illumination, often infer the level exposure to ALANbased on remotely sensedmeasurements
such as from the satellite-basedVIIRSDNB sensor (Robert et al 2015,Hu et al 2018,Horton et al 2019,
Schroer 2019). Our results support, at least in coastal environments, that satellite-basedmeasurements of ALAN
are useful proxies for assessing total light exposure as described by SI. The implication is that the role of ALAN in
both epidemiology and landscape ecology can be reasonably bemodeledwhen directmeasurements of total
exposure are not feasible. It should be noted though, that while theWAperforms significantly better than the
VIIRSDNB inmodelling SI, the spatial resolution of both data sets smooths over the large and highly localized
variations observed in the coastal lighting environment.

Modelling log(SI)
Illuminance experienced in thefield, as described by log(SI), was strongly correlated with remotemeasures of
upwards radiance as described by log(DNB), or compositemeasures utilizing remotely sensedmeasures of
upwards radiance such as log(WA). However, log(WA)was found to describemore of the observed variation in
log(SI) than log(DNB). This is not surprising as theWA incorporates theDNB, zenith sky brightness as
measured by SQMs, and an opticalmodel of the atmosphere (Falchi et al 2016).We also observed strong
correlations between log(WA) and our SQMmeasurements, reflecting recent observations in the near-shore
environment (Ges et al 2018).What wewere surprised by, given prior observations of the role of cloud cover in
reflecting upward radiated light (Kyba et al 2011, Bará 2016, Jechow et al 2017), is the small role of the percent of
the sky covered by clouds in affecting the observed variation in either SI or SQMmeasurements against the range
of night sky luminance values expected using theWAover the extent of our study area (figures 2(a)–(d)). This
pattern carried over to our observed relationships between log(SImodeled) and log(SI) (figures 2(e), (f)), as well as
comparatively low contributions to observed variations in linearmodels of log(SI) associatedwith the percent
horizon (tables 1–2, S1–2).We observed that cloud cover tended to increase the luminance of the night sky
zenith, but asmost of luminance in our hemispheric images appears to be driven by variations in lighting near
the horizonwe thenfind variations cloud cover onlymake a relatively small contribution to our observed
variations in SI. This resultmay be a function of the range of lighting conditions in the study, which included a
muchwider range of conditions (8–8, 900mlux SI) than other studies investigating the influence of clouds on
illumination (e.g., 3–25mlux; Jechow et al 2017).

Figure 5.The spatial CV versus sitemean for log(SI)measurements for (a) zero horizon (r=0.76, p<10−4) and (b) edited horizon
(r=0.76, p<10−4) images.
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Ourmodeling of log(SI)was further improved through the additional incorporation of the fraction of the
image hemisphere covered by structures and lights along the horizon.While structures along the horizon can
obscure direct illumination (Luginbuhl et al 2009, Gaston et al 2012), we found log(SI) tended to increase with
percent horizon. This ismost likely due to those structures either acting as sources of direct illumination, or as
reflectors of artificial light sources (Cabello andKirschbaum2001, Chalkias et al 2006, Brons et al 2008,
Kocifaj 2008, Butt 2012, Gaston et al 2013).

We did find ourmodel which utilizedGIS-derived SVF could account for almost asmuch of the observed
variation in log(SI) as thosewhich used ground-derived percent horizon. This indicates that there is potential in
future research involving the role of ecological light pollution across a landscape for estimating total exposure to
light at night usingmodels which can be completely derived from remotely sensedmeasurements such as SVF

andWA.We constructed ourmodel across a large range ofWAbrightness values ( m374 cd

m2 to12mcd

m2 ). However,

thismodelmay be less applicable in darker environments approaching natural sky brightness ( m174 cd

m2 ) (Falchi
et al 2016)where the horizonmay block light rather than reflecting it. In such instances, the percent horizon or
sky view factorwill decrease SI rather than increase it. Analysis of sites along a gradient that includes even darker
environments than thosewe sampledwould likely discover an inflection point at which the percent horizon
switched from increasing over illuminance to decreasing it. A similar inflection point exists for clouds, which
transition from reflecting light to shielding from light at a point along a gradient away from lighted areas.

Hemispheric variations in the light profile of the night sky
Because of its ground-based nature and proximity within the study area, outdoor lighting created conditions
where the horizon is farmore luminous than the zenith of the night sky. This result, wherebymost of the
illumination experienced in the comes from sources near the horizon, has been reported in other urban and
peri-urban environments (Bennie et al 2016). This indicates that the total exposure to light pollution at our
coastal sites is primarily driven by sources which are not necessarily close enough tomake a location appear
bright from the perspective of remote sensing platforms.We propose, at least in coastal environments, that the
contribution of near-horizon illuminationwill dominate scalar illuminance in all but the darkest night sky
environments. These dark conditions did not exist within our study area.

We also found evidence that the luminance of the horizon, rather than the zenith, could explain a larger
portion of the observed variation in the luminance of the full night sky (figure 4). This hemispheric anisotropy
also appears to be reflected in the significantly weaker correlations observed between log(DNB) or log(WA) and
the luminance of either the zenith or horizon elevation bands and the sky, as compared to log(SI). This reinforces
the importance of using ameasure of illuminancewhich integrates light over the entire hemisphere of the sky,
including the luminous near-horizon environment, as ametric for the total exposure to ambient artificial light
levels.

Spatial variability of SIwithin sites
The lighting environment was highly heterogeneouswithin the spatial resolution of theWA (∼770 mby 927 m).
This appears to be especially true in environments with a greater spatial variation in illuminationwith the spatial
coefficient of variation of log(SI)within sites positively correlatedwith both percent horizon and log(SI), using
either zero or edited horizon images (figure 4). This indicates that although log(WA)was strongly correlated
with log(SI) in general, the resolution of theWA smooths over areas with a high degree of spatial heterogeneity in
SI.While further refinements inmodeling skyglowmay be provided by the development of a city emission
function (Kocifaj et al 2019) for coastal southernCalifornia our data suggest large and highly localized variations
in SI, such as those associatedwith sources of direct glare, will still need to be considered. The importance of even
relatively small scales of habitat heterogeneity on coastal communities (Hartnoll andHawkins 1980,
Underwood andChapman 1996,Meager et al 2011), and the role of light pollution as an environmental stressor
in such communities (Salmon 2003, Bird et al 2004, Davies et al 2014), points towards the need to consider SI at
finely resolved spatial scales (Garratt et al 2019).

Conclusion

Our results validate the use of remotely sensed nighttime lights data in ecology and epidemiology as afirst-order
proxy for ground-based total artificial light exposure, at least in suburban and urban coastal environments.We
created a simple linearmodel of log(SI) relying only on theWA, a freely available data set (see www.
lightpollutionmap.info), and percent horizon, which although determined via analysis of hemispheric images
may potentially be inferred fromSVF values calculated remotely sensed elevation data sets (Zakšek et al 2011,
Kidd andChapman 2012). This result suggests the potential to extrapolate within the geographic range of our
model to estimate total exposure to ALANwithin similar environments.
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While we observed a strong correlation between log(WA) and log(SI), ourmodel comeswith some caveats.
First, SI varies significantly within the scale defined by the spatial resolution of theWA.The spatial resolution of
theWAobscures the picture of light exposure in environments with a high degree of spatial heterogeneity in SI.
Given prior observations on the influence of ALAN in reshaping the connectivity of landscapes (Stone et al 2009,
Azam et al 2016, Bliss-Ketchum et al 2016), thismay ultimately limit the use of data at this spatial resolution as
habitat variables in species distributionmodeling. Second, artificial light sources create conditions where the
horizon is farmore luminous than the zenith of the night sky, even if they are distant enough to not contribute
substantially to the upwards radiance remotelymeasured for that location.With the entire night sky hemisphere
contributing to SI this will often lead to locations to experience higher levels of nighttime illumination thanwhat
would be expected from theWAalone. Third, theVIIRSDNB sensor is not sensitive to light<500 nm (Miller
et al 2013).With the transition from lighting sources such as sodiumvapor bulbs to LEDs the spectrumof ALAN
is currently shifting tomore blue light (Bará 2013, Luginbuhl et al 2014, Barentine et al 2018), andwith it an
increase in the potential formodels which incorporateDNBdata, such as theWA, to underreport total visible
exposure. Ultimately, wefind theWAcan be used tomake usable predictions of exposure to ALANon the
ground for ecological and epidemiological studies, andwhich could be further improvedwith the incorporation
of additional satellite-based data sets withfiner spatial and spectral resolutions.
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